

 Navigation

 	
 index

 	
 next |

 	termite 0.0.1 documentation

termite

A tool to automate your work.

Features

	Runs tasks from the command line.

	Watches for file changes .

	Serves HTML files and reload them on changes.

Alternatives

A list of alternatives to Termite [http://google.com/]:

	Grunt [http://gruntjs.com/]

	Brunch [http://brunch.io/]

	Mimosa [http://mimosa.io/]

	LiveReload [http://livereload.readthedocs.org/]

Why another build tool?

After some frustration with the alternatives, I started to write Termite [http://google.com/].

Requeriments

Termite [http://google.com/] needs Python [http://python.org] 3.3 or better

Installation

pip install termite

Contents:

	1. Basic concepts

	2. Commands
	2.1. Global tasks

	3. Tasks
	3.1. Shell tasks

	3.2. Cp tasks

	3.3. Server task

	4. Calling external python functions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2017, José Luis Lafuente.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	termite 0.0.1 documentation

1. Basic concepts

Termite uses the yaml [http://yaml.org/] format to define commands and tasks. The wikipedia
has a good description of the format [http://en.wikipedia.org/wiki/YAML].

The mains entry point is a yaml file, called termite.yaml, Which should be in
your current working directory.

In termite we have two basic elements, the commands, and the tasks. A command
is a list of tasks, and should have a name, which is basically an identifier.
Let’s see a basic termite.yaml file:

- command:
 name: dev
 tasks:
 - shell:
 command: echo "Hello world!!"

Run this in the command line to see the greeting:

termite dev

 Copyright 2017, José Luis Lafuente.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	termite 0.0.1 documentation

2. Commands

Commands define the tasks to be run. An example of a termite.yaml file with 2
commands:

- command:
 name: hello
 tasks:
 - shell:
 command: echo "Hello world!!"

- command:
 name: bye
 tasks:
 - shell:
 command: echo "Goodbye!!"

Pass the name of the command to termite as its first argument. If you don’t
specify any command name in the command line, Termite [http://google.com/] runs the first command
found. In this example, running in the command line:

termite hello

has the same effect as run just

termite

2.1. Global tasks

It is possible create a task globally and use it in several commands, an example:

- shell: &some_id
 command: echo "Hello world!!"

- command:
 name: hello
 tasks:
 - shell: *some_id

- command:
 name: bye
 tasks:
 - shell: *some_id

 - shell:
 command: echo "Goodbye!!"

 Copyright 2017, José Luis Lafuente.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	termite 0.0.1 documentation

3. Tasks

There are 3 types of tasks in Termite [http://google.com/], shell, cp and server

3.1. Shell tasks

Shell tasks accepts 3 options, Command (Mandatory), Cwd (Optional) and watch.

3.1.1. Command (Mandatory)

Specifies the command to run. Is also possible specify a list of commands. In
this case, the commands are run sequentially.

3.1.2. Cwd (Optional)

The current directory will be changed to cwd before the command is executed.

3.1.3. Watch (Optional)

List of files to watch for modifications. After any change, the command is
executed again. It is possible to use shell-style wildcards (* or **). It
is also possible specify folders to watch, in this case /some/path/ and
/some/path/** have the same effect.
If watch is omitted, the command is run only once.

3.2. Cp tasks

Copy files is a very common operation, thats the reason have a task for this
operation, although would we possible to use a command task for copy files. For
cp tasks there are 3 options, Source (Mandatory), Dest (Mandatory) and watch.

3.2.1. Source (Mandatory)

A file, or list of files to copy. Shell-style wildcards are allowed.

3.2.2. Dest (Mandatory)

Where copy the file or files. Should be a folder, if doesn’t exist is created.
Be careful, files are overwritten without any warning.

3.2.3. Watch (Optional)

Specifies if the source files should be monitored. It is boolean value, by
default the value is set to False.

3.3. Server task

This task start an HTTP server. If you are watching any files, your browser is
automatically refreshed after every change. Has only one option, Path (Mandatory).

3.3.1. Path (Mandatory)

Serves files from this directory.

 Copyright 2017, José Luis Lafuente.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	termite 0.0.1 documentation

4. Calling external python functions

Command line is great, but sometimes is useful to write python code to do
some tasks. Termite [http://google.com/] provides a command line utility, called tcli, to help
you with that.

First, write a python file with your utilities, call this file
termite_cli.py, and put this file in the same directory where your termite.yaml
resides.

A simple termite_cli.py file:

def hello(args):
 print ('Hello, your arguments are: ', args)

Now, from the command line, run this:

tcli hello -x 5

Termite [http://google.com/] is going to call the function hello in the file termite_cli.py.
All the arguments after the function name, are saved in a python list and
passed to the function. In our case the value of args is [‘-x’, ‘5’]

Call the hello function from a Termite [http://google.com/] file with this task:

- shell:
 command: tcli hello the arguments

Lets write a more complicated termite_cli.py file:

import os
from docopt import docopt
from jinja2 import Environment, FileSystemLoader

def render(args):
 usage = '''Usage: render (--input IN) (--output OUT) [<vars>...]'''

 arguments = docopt(usage, argv=args)
 variables = dict([var.split('=') for var in arguments['<vars>']])

 env = Environment(loader=FileSystemLoader(os.getcwd()))
 template = env.get_template(arguments['IN'])
 with open(arguments['OUT'], 'w') as out:
 out.write(template.render(**variables))

And the associated Termite [http://google.com/] task:

- shell:
 command: tcli render --input app/index.html --output build/index.html dev=true

In this example we are rendering a HTML template using Jinja [http://jinja.pocoo.org/]. To parse the command line arguments we are using docopt [http://docopt.org/].

 Copyright 2017, José Luis Lafuente.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	termite 0.0.1 documentation

Index

 Copyright 2017, José Luis Lafuente.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		termite 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, José Luis Lafuente.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

links.html

 Navigation

 		
 index

 		termite 0.0.1 documentation »

 © Copyright 2017, José Luis Lafuente.
 Created using Sphinx 1.3.5.

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

