
termite
Release 0.0.1

February 16, 2017

Contents

1 Features 3

2 Alternatives 5

3 Why another build tool? 7

4 Requeriments 9

5 Installation 11
5.1 Basic concepts . 11
5.2 Commands . 11
5.3 Tasks . 12
5.4 Calling external python functions . 13
5.5 Indices and tables . 14

i

ii

termite, Release 0.0.1

A tool to automate your work.

Contents 1

termite, Release 0.0.1

2 Contents

CHAPTER 1

Features

• Runs tasks from the command line.

• Watches for file changes .

• Serves HTML files and reload them on changes.

3

termite, Release 0.0.1

4 Chapter 1. Features

CHAPTER 2

Alternatives

A list of alternatives to Termite:

• Grunt

• Brunch

• Mimosa

• LiveReload

5

http://google.com/
http://gruntjs.com/
http://brunch.io/
http://mimosa.io/
http://livereload.readthedocs.org/

termite, Release 0.0.1

6 Chapter 2. Alternatives

CHAPTER 3

Why another build tool?

After some frustration with the alternatives, I started to write Termite.

7

http://google.com/

termite, Release 0.0.1

8 Chapter 3. Why another build tool?

CHAPTER 4

Requeriments

Termite needs Python 3.3 or better

9

http://google.com/
http://python.org

termite, Release 0.0.1

10 Chapter 4. Requeriments

CHAPTER 5

Installation

pip install termite

Contents:

Basic concepts

Termite uses the yaml format to define commands and tasks. The wikipedia has a good description of the format.

The mains entry point is a yaml file, called termite.yaml, Which should be in your current working directory.

In termite we have two basic elements, the commands, and the tasks. A command is a list of tasks, and should have a
name, which is basically an identifier. Let’s see a basic termite.yaml file:

- command:
name: dev
tasks:

- shell:
command: echo "Hello world!!"

Run this in the command line to see the greeting:

termite dev

Commands

Commands define the tasks to be run. An example of a termite.yaml file with 2 commands:

- command:
name: hello
tasks:

- shell:
command: echo "Hello world!!"

- command:
name: bye
tasks:

- shell:
command: echo "Goodbye!!"

11

http://yaml.org/
http://en.wikipedia.org/wiki/YAML

termite, Release 0.0.1

Pass the name of the command to termite as its first argument. If you don’t specify any command name in the command
line, Termite runs the first command found. In this example, running in the command line:

termite hello

has the same effect as run just

termite

Global tasks

It is possible create a task globally and use it in several commands, an example:

- shell: &some_id
command: echo "Hello world!!"

- command:
name: hello
tasks:

- shell: *some_id

- command:
name: bye
tasks:

- shell: *some_id

- shell:
command: echo "Goodbye!!"

Tasks

There are 3 types of tasks in Termite, shell, cp and server

Shell tasks

Shell tasks accepts 3 options, Command (Mandatory), Cwd (Optional) and watch.

Command (Mandatory)

Specifies the command to run. Is also possible specify a list of commands. In this case, the commands are run
sequentially.

Cwd (Optional)

The current directory will be changed to cwd before the command is executed.

Watch (Optional)

List of files to watch for modifications. After any change, the command is executed again. It is possible to use shell-
style wildcards (* or **). It is also possible specify folders to watch, in this case /some/path/ and /some/path/** have
the same effect. If watch is omitted, the command is run only once.

12 Chapter 5. Installation

http://google.com/
http://google.com/

termite, Release 0.0.1

Cp tasks

Copy files is a very common operation, thats the reason have a task for this operation, although would we possible to
use a command task for copy files. For cp tasks there are 3 options, Source (Mandatory), Dest (Mandatory) and watch.

Source (Mandatory)

A file, or list of files to copy. Shell-style wildcards are allowed.

Dest (Mandatory)

Where copy the file or files. Should be a folder, if doesn’t exist is created. Be careful, files are overwritten without any
warning.

Watch (Optional)

Specifies if the source files should be monitored. It is boolean value, by default the value is set to False.

Server task

This task start an HTTP server. If you are watching any files, your browser is automatically refreshed after every
change. Has only one option, Path (Mandatory).

Path (Mandatory)

Serves files from this directory.

Calling external python functions

Command line is great, but sometimes is useful to write python code to do some tasks. Termite provides a command
line utility, called tcli, to help you with that.

First, write a python file with your utilities, call this file termite_cli.py, and put this file in the same directory where
your termite.yaml resides.

A simple termite_cli.py file:

def hello(args):
print ('Hello, your arguments are: ', args)

Now, from the command line, run this:

tcli hello -x 5

Termite is going to call the function hello in the file termite_cli.py. All the arguments after the function name, are
saved in a python list and passed to the function. In our case the value of args is [’-x’, ‘5’]

Call the hello function from a Termite file with this task:

- shell:
command: tcli hello the arguments

5.4. Calling external python functions 13

http://google.com/
http://google.com/
http://google.com/

termite, Release 0.0.1

Lets write a more complicated termite_cli.py file:

import os
from docopt import docopt
from jinja2 import Environment, FileSystemLoader

def render(args):
usage = '''Usage: render (--input IN) (--output OUT) [<vars>...]'''

arguments = docopt(usage, argv=args)
variables = dict([var.split('=') for var in arguments['<vars>']])

env = Environment(loader=FileSystemLoader(os.getcwd()))
template = env.get_template(arguments['IN'])
with open(arguments['OUT'], 'w') as out:

out.write(template.render(**variables))

And the associated Termite task:

- shell:
command: tcli render --input app/index.html --output build/index.html dev=true

In this example we are rendering a HTML template using Jinja. To parse the command line arguments we are using
docopt.

Indices and tables

• genindex

• modindex

• search

14 Chapter 5. Installation

http://google.com/
http://jinja.pocoo.org/
http://docopt.org/

	Features
	Alternatives
	Why another build tool?
	Requeriments
	Installation
	Basic concepts
	Commands
	Tasks
	Calling external python functions
	Indices and tables

